If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+1.5X-54.94=0
a = 1; b = 1.5; c = -54.94;
Δ = b2-4ac
Δ = 1.52-4·1·(-54.94)
Δ = 222.01
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.5)-\sqrt{222.01}}{2*1}=\frac{-1.5-\sqrt{222.01}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.5)+\sqrt{222.01}}{2*1}=\frac{-1.5+\sqrt{222.01}}{2} $
| -3+22x+3x+6=105 | | (7/20)x+(3/28)=(4/35) | | -3+22x=3x+6 | | -8(2x-7)=100 | | -10(1+u)-18=2 | | -3+22x=105 | | x/(x+20)/2=3x | | 80+x=200 | | -91=7d+6d | | n–16=–10 | | x/(x+20)/2=3 | | 5x+9-8x-12=18 | | 6x+12=25 | | x=3/4x+5/8=4x | | 6a-6a=9-3 | | 95=1.5*t^2 | | 8={-8b} | | 8q=-16 | | 1=7/6(x-95) | | 6−3x=−15 | | 8=|-8b| | | 34567x=2831930x | | 95=1.5t^2 | | 42=6(6+b) | | 3/x=9/x−4 | | -8e+7+3e=13 | | 2-7y=17 | | 3x+(4x-10)=7x-10 | | 5x-7+19=90 | | -18=15-3(6x=5) | | 15x+5=(x+7 | | -3(12+q)=-30 |